Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(12): 6155-6166, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38498691

RESUMEN

The migration and transformation of allelochemicals are important topics in the exploration of allelopathy. Current research on the migration of allelochemicals mostly uses soil column and thin layer methods and verifies it by sowing plant seeds. However, traditional methods inevitably ignore the flux caused by the movement of allelochemicals carried by water. In fact, the flux determines the amount of allelochemicals that directly affect plants. In this work, a method of microdialysis combined with a soil column and UPLC-MS/MS to detect the flux of allelochemicals was developed for the first time and successfully applied to the detection of five taxane allelochemicals in soil. Meanwhile, by adding taxane allelochemicals to the soil and detecting their transformation products using UPLC-MS/MS, the half-life of taxane in the soil was determined, and the transformation pathway of taxane allelochemicals in the soil was further speculated.


Asunto(s)
Feromonas , Suelo , Feromonas/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Plantas/metabolismo
2.
J Sep Sci ; 46(15): e2300098, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37246933

RESUMEN

In recent years, it has been found that changing ambient conditions (CO2 /N2 , temperature, pH) can trigger a switchable phase transition of deep eutectic solvents, and such solvents are known as responsive deep eutectic solvents. In this work, we present the development history, properties, and preparation of responsive deep eutectic solvents, followed by the application of responsive deep eutectic solvents in the extraction and separation of bioactive compounds are presented. Importantly, the mechanism of responsive deep eutectic solvents in the extraction of bioactive compounds is discussed. Finally, the challenges and prospects of responsive deep eutectic solvents in the extraction and separation of bioactive compounds are proposed. Responsive deep eutectic solvents are considered green and efficient solvents. Some methods for extraction and separation of bioactive compounds by responsive deep eutectic solvents can increase the possibility of recycling the deep eutectic solvents, and provide higher efficiency in the extraction and separation field. It is hoped that this will provide a reference for the green and sustainable extraction and separation of various bioactive compounds.


Asunto(s)
Disolventes Eutécticos Profundos , Solventes/química
3.
Nat Prod Res ; 37(24): 4144-4155, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36718097

RESUMEN

ES contains compounds known to have significant anti-fatigue activity. In recent years, it has received extensive attention because it is efficient. However, its active ingredients on antifatigue effect are still unclear. This study attempts to establish the spectrum-effect relationship of ES antifatigue activity to screen the effective components. The results showed that the similarity of 15 ES fingerprints obtained by LC-MS/MS was 0.533-0.992, and the chemical structures of 22 common peaks were identified. The anti-fatigue activity of 15 batches of ES was characterized by forced swimming test of mice and quantified by CAFI, among which S4, S1 and S5 had better activity. 9 components (caffeic acid, 5-(4-O-ß-D-glucosylferoyl)-quinic acid, (±)13-HODE, isofraxidin, eleutheroside E, syringin, pinoresinol diglucoside or its isomer, 7,8-dihydrodehydrocarbinol alcohol-4-O-ß-D-glucoside, secoisolariciresinol-4-O-ß-D-glucoside) highly related to anti-fatigue activity may be the effective components of ES.


Asunto(s)
Eleutherococcus , Extractos Vegetales , Extractos Vegetales/química , Cromatografía Liquida , Eleutherococcus/química , Espectrometría de Masas en Tándem , Glucósidos/farmacología , Glucósidos/análisis , Análisis Factorial
4.
J Sci Food Agric ; 103(4): 2155-2165, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36369956

RESUMEN

BACKGROUND: Velvetleaf (Abutilon theophrasti Medik.), primarily a cropland weed, exerts adverse impacts on the productivity of various crops, including soybean (Glycine max L.), wheat (Triticum aestivum L.), and maize (Zea mays L.), by hindering their vegetative growth. However, the interference mechanism of velvetleaf on the three crops remains unclear. RESULTS: The inhibitory effect of velvetleaf water extract on the germination and growth of soybean, wheat, and maize was determined in pot experiments and field trials. Four phenolic acids were identified as allelochemicals: protocatechuic acid (PA), gallic acid (GA), chlorogenic acid (CHA), and vanillic acid (VA). These allelochemicals were detected in different parts (leaves, roots, and stems) of velvetleaf, and in the rhizosphere soil of tested crops over the range of 1.19-556.23 µm kg-1 . These allelochemicals were administered in approximate concentrations as in velvetleaf roots and rhizosphere soil, and their effects varied with crop species and velvetleaf parts. The allelochemicals generally had low-dose stimulation and high-dose inhibition effects on the growth of soybean, wheat, and maize. Furthermore, the biomass distribution of these crops was affected by allelochemicals in the soil. In field trials, the allelochemicals significantly (P < 0.05) inhibited the growth of all tested crops over the whole growth period, and PA showed a significant (P < 0.05) inhibitory effect on the yield of soybean, wheat, and maize. CONCLUSION: GA, PA, CHA, and VA in velvetleaf aqueous extracts were identified as allelochemicals that play an inhibitory role on three crops. © 2022 Society of Chemical Industry.


Asunto(s)
Triticum , Zea mays , Glycine max , Feromonas/farmacología , Suelo , Productos Agrícolas , Ácido Gálico/farmacología
5.
Colloids Surf B Biointerfaces ; 222: 113067, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36469979

RESUMEN

In this study, a switchable temperature-responsive ionic liquid-based surfactant-free microemulsion (TRIL-SFME) for extraction and in-situ separation of hydrophilic and lipophilic compounds from Camptotheca acuminata was firstly developed and systematically characterized. This TRIL-SFME was obtained using 1-hexyl-3-methylimidazolium tetrafluoroborate ([HMIM][BF4]), 1,2-propanediol and H2O. The prepared TRIL-SFME presented low viscosity and rapid response to temperature. Firstly, the effect of temperatures on TRIL-SFME phase behavior was studied followed by determination of effect of liquid/solid ratio and extraction time on the extraction yields of the targeted compounds. The TRIL-SFME demulsified rapidly by thermal stimulus, resulting in in-situ separation and enrichment of compounds with varying polarity. The results of present study revealed that TRIL-SFME had higher extraction yields (1.50-5.79 folds) compared to traditional solvents and individual components of TRIL-SFME. Besides, in-situ separation and enrichment of hydrophilic compounds (phenolic acids) and lipophilic compounds (alkaloids) was accomplished in short time (within 3 min) by cooling the system to 4 â„ƒ. Furthermore, the mesoscopic behavior between TRIL-SFME and targeted compounds was simulated by dissipative particle dynamics (DPD) to explore the extraction mechanism for the first time. The results illustrated the formation of W/IL structure of TRIL-SFME and clarified solubilization mechanism of TRIL-SFME system for targeted compounds, which is related to its special "water pool" structure. This novel and switchable TRIL-SFME is an environmentally friendly and promising alternative to simultaneously extract, in-situ separate and enrich the natural active compounds with different polarity from plant matrices.


Asunto(s)
Camptotheca , Líquidos Iónicos , Surfactantes Pulmonares , Líquidos Iónicos/química , Temperatura , Tensoactivos , Solventes/química
6.
Curr Mol Med ; 23(8): 825-833, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35959614

RESUMEN

BACKGROUND: Irritable bowel syndrome (IBS) is a known brain-gut disorder. Currently, the molecular and cellular mechanisms of IBS remain unclear. Atractylenolide-I (ATL-I) is a majorly bioactive component extracted from Rhizoma Atractylodes Macrocephalae. METHODS: Studies have revealed that ATL-I functioned as an anti-tumor drug in various cancers. However, the effects and molecular mechanisms of ATL-I on the pathological processes of colonic mucosal epithelial cells (CMECs) during IBS remain unclear. This study reports ATL-I effectively alleviated the oxidative stress-induced colonic mucosal epithelial cell dysfunction. In colonic mucosal tissues from IBS patients, we detected upregulated miR-34a-5p and suppressed glucose metabolism enzyme expressions. Under H2O2 treatment which mimics in vitro oxidative stress, miR-34a-5p was induced and glucose metabolism was inhibited in the colon mucosal epithelial cell line, NCM460. Meanwhile, ATL-I treatment effectively overcame the oxidative stress-induced miR-34a- 5p expression and glucose metabolism in NCM460 cells. RESULT: By bioinformatics analysis, Western blot and luciferase assay, we illustrated that miR-34a-5p directly targeted the 3'UTR region of glucose metabolism key enzyme, lactate dehydrogenase-A (LDHA) in colonic mucosal epithelial cells. Rescue experiments validated that miR-34a-5p inhibited glucose metabolism by targeting LDHA. Finally, we demonstrated that ATL-I treatment reversed the miR-34a-5p-inhibited glucose metabolism and -exacerbated colonic mucosal epithelial cell dysfunction under oxidative stress by modulating the miR-34a-5p-LDHA pathway. CONCLUSION: Summarily, our study reports the roles and mechanisms of ATL-I in the oxidative stress-induced colonic mucosal epithelial cell dysfunction during IBS through regulating the miR-34a-5p-LDHA-glucose metabolism axis.


Asunto(s)
Atractylodes , Síndrome del Colon Irritable , MicroARNs , Humanos , Lactato Deshidrogenasa 5/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Síndrome del Colon Irritable/genética , Atractylodes/metabolismo , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Transducción de Señal , Células Epiteliales/metabolismo , Estrés Oxidativo , Glucosa/metabolismo
7.
Nat Prod Res ; : 1-7, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36070589

RESUMEN

This study introduced the preparation of a novel HOF-loaded PU sponge (HOF-3@PU) composite for the sustainable and efficient purification of catalpol and ajugol from Rehmannia glutinosa leaves for the first time. HOF-3 was selected as the best adsorbent from the five synthesised HOFs. HOF-3@PU was prepared by ultrasonication, and the loading conditions were optimised. The results showed that the optimum adsorption conditions are as follows: adsorption liquid volume: 160 mL, flow rate: 3.0 mL/min, pH: 6.0, concentration: 1.62 mg/mL for catalpol and 2.18 mg/mL for ajugol. The optimum desorption conditions are as follows: desorption agent: ethanol, volume fraction: 60%, flow rate: 2.0 mL/min, volume: 300 mL and pH: 6.0. Under the optimal process conditions, the adsorption capacities of catalpol and ajugol were 75.62 and 68.41 mg/g, the desorption rates were 78.5 and 86.4% and the purities were 38.7 and 36.5%, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...